
INNO-LiPA™ HBV

TEST PROCEDURE

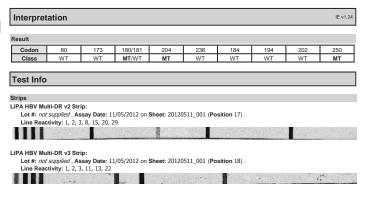
Fast, easy and highly specific DNA hybridization tests.

WIIII.

DNA-probe

INNO-LiPATM TEST PRINCIPLE AND MAIN STEPS

- 1. Denaturation of amplified biotinylated DNA
- 2. Hybridization with specific oligonucleotide probes immobilized as parallel lines on membrane-based strips
- 3. Remove non-specific and unbound DNA
- 4. Incubation with conjugate and substrate resulting in a purple precipitate


HBV LiPA COMPATIBILITY

- All LiPA HBV assays
 - use the same program on AutoBlot 3000H or Auto-LiPA™ 48
 - have the same manual protocol
 - have identical LiPA reagents
- Amplicon of INNO-LiPA™ HBV Multi-DR can also be used for INNO-LiPA™ HBV Genotyping

LiRASTM FOR LiPA HBV:

EASY AND OBJECTIVE INTERPRETATION SOFTWARE FOR THE DEVELOPED STRIPS

- Scanning mode with integrated calibration
- Choice between data entry model: scanned or manual entry
- Customized reports: standard or summary report, adjustable to your needs
- Saves electronic image of each strip
- User-friendly and customizable interfaces
- Filter management: e.g. 100 samples with genotype A from January till March
- Patient follow-up*: overview of test performed per patient and follow-up of drug resistance patterns over time

ORDERING INFORMATION

Ркорист		AR	TICLE I
Assays			
INNO-LiPA™ HBV Genotyping	CE		80691
INNO-LiPA™ HBV Multi-DR	CE		81383
INNO-LiPA™ HBV Genotyping	RUO		80070
INNO-LiPA™ HBV Multi-DR	RUO		81382
INNO-LiPA™ HBV PreCore	RUO		80883
Software			

۸	4	 -4:	

Auto-LiPA™ 48	CE	80
AutoBlot 3000H	CE	

REFERENCES

- 1. Yang et al. Clinica Chimica Acta 2010;411(23-24):1951-1956
- 2. Lok et al. J Clin Microbiol 2002;40:3729-3734
- 3. Chen et al. J Med Virol 2004;74:536-42
- 4. European Association for the Study of the Liver. J Hepatol 2012;57(1):167-185 19. European Association for the Study of the Liver.
- 5. Janssen et al. Lancet 2005;365:123-129
- 6. Zöllner et al. Hepatology 2004;39(1):42-50
- 7. Tuaillon et al. PLoS ONE 2012;7(3):e32143
- 8. Lin CL, Kao JH. J Gastroenterol Hepatol 2011;26(Suppl 1):123-130
- 9. Martinot-Peignoux et al. Poster presented at EASL, 18-22 April 2012 10. Congly et al. Poster presented at AASLD, 9-13 November 2012
- 11. Martinot-Peignoux et al. Poster presented at AASLD, 4-8 November 2011
- 12. Moucari et al. Antivir Ther 2009;14:1183-1188
- 13. Gish et al. | Viral Hepat 2010;17(1):16-22 14. Jaroszewicz et al. J Hepatol 2010;52(4):514-522

Technologiepark 6- B-9052 Gent - Belgium T +32 (0)9 329 13 29 - F +32 (0)9 329 17 75

www.fujirebio-europe.com

15. Libbrecht et al. J.Clin.Microbiol 2007;45(12):3935-3941

- 16. Lampertico et al. Hepatology 2005;42:1414-1419
- 17. Cornberg et al. Z Gastroenterol 2007;45:1-50
- 18. Lok AS, McMahon BJ. Hepatology 2009; Vol. 50, No. 3
- | Hepatol 2009;50(2):227-42

- 24. Malik et al. PLoS One 2012;7(6):e39028
- 26. Xiao et al. J Med Virol 2011;83(9):1544-50
- 27. Ren et al. J Viral Hepat 2010;17(12):887-95

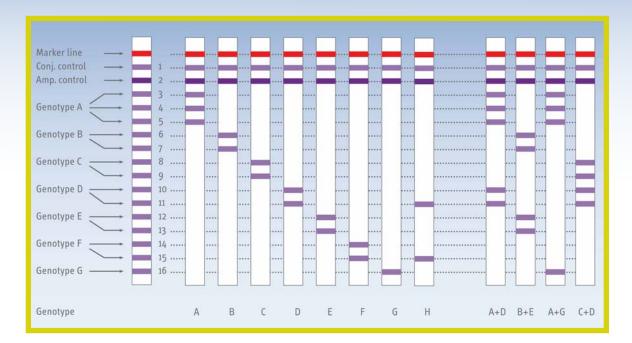
- 20. Zoulim et al. J Viral Hepat 2007;14 Suppl 1:29-36
- 21. Sablon et al. Expert Rev Mol Diagn 2003;3(5):535-47
- 22. Hussain et al. J Clin Microbiol 2003;41(8):3699-3705
- 23. Ozasa et al. Hepatology 2006;44(2):326-34
- 25. Hayashi et al. Intervirology 2009;52(1):22-8

- 28. Sonneveld et al. Hepatology 2012;56(1):67-75
- 29. Tacke F, Shirvani-Dastgerdi E. Hepat Mon 2012;12(6):357-60

The complete portfolio for the molecular identification of the Hepatitis B Virus

INNO-LiPA[™] HBV Genotyping INNO-LiPA[™] HBV Multi-DR INNO-LiPA[™] HBV PreCore

INNO-LiPA™ HBV



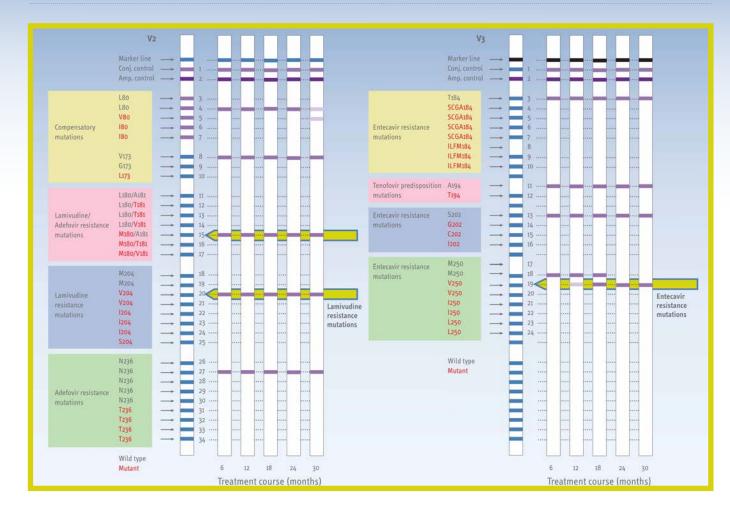
INNO-LiPA™ HBV Genotyping

Line probe assay for the identification of hepatitis B virus genotypes A to H

STRIP LAY-OUT

FEATURES AND BENEFITS

- Clear identification of mixed infections: LiPA detects up to 16.3 % more mixtures than direct sequencing, confirmed by clonal analysis [1, 2]
- Sensitive detection of genotypes: LiPA is more sensitive than PCR-RFLP (98.8 % vs 65.0 %) [3] and more sensitive than sequencing [2]
- Amplicon of INNO-LiPA™ HBV Multi-DR can also be used for INNO-LiPA™ HBV Genotyping


CLINICAL RELEVANCE OF HBV GENOTYPING

- Genotyping linked with treatment response and part of clinical guidelines [4]: HBV genotypes A and B are associated with a better response to pegylated IFN- α than genotypes C and D.^[5] The mutational pattern of lamivudine drug resistance differs between genotypes A and D.^[6]
- The correlation between levels of Hepatitis B surface antigen (HBsAg) and the HBV genotype makes both markers valuable tools for prognosis and management of chronic hepatitis B: HBsAg levels differ according to HBV genotype prior to treatment [7-12], during treatment with pegylated IFN- α [8, 12] and nucleos(t)ide analogues [13] and during the natural course of HBV infection. [14]

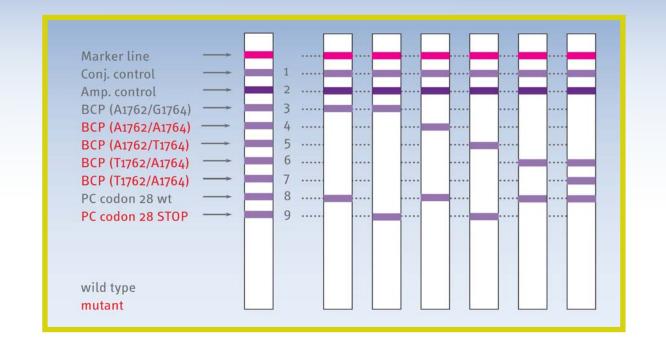
INNO-LiPA™ HBV Multi-DR

Line probe assay for the simultaneous detection of hepatitis B virus wild-type motif and resistance associated mutations

STRIP LAY-OUT

FEATURES AND BENEFITS

- Relevant, accurate and up-to-date detection of drug resistance associated mutations as well as known compensatory mutations
- LiPA is highly sensitive and specific and offers the earliest timepoints for detection of mutants:
 - 2,8 times greater chance for LiPA to detect a given mutation than direct sequencing at any moment in time [15]
 early detection of genotypic resistance allows rapid and effective HBV suppression [16]
- HBV drug resistance testing: part of clinical guidelines [17-19]


CLINICAL RELEVANCE OF HBV DRUG RESISTANCE TESTING

- Antiviral drug resistance in patients with chronic hepatitis B leads to antiviral treatment failure. [20]
- Resistance should be identified as early as possible before viral load rebound and before rise of ALT (alanine aminotransferase) levels.[21]
- As soon as drug resistance is identified, an appropriate therapy can be initiated with the most effective antivirals now available.^[16]

INNO-LiPA™ HBV PreCore

Line probe assay for the simultaneous detection of HBV wild-type motif and mutations in the basal core promotor (BCP) and PreCore regions

STRIP LAY-OUT

FEATURES AND BENEFITS

- More sensitive than direct sequencing for the detection of mixed sequences in precore (PC) and basal core promotor (BCP) region [22]
- Prediction of increased risk for hepatocellular carcinoma and progression of liver disease [23-27]
- Determine cause of HBeAg negativity: treatment response or PC/BCP mutations? [28-29]

RELEVANCE OF HBV PRECORE IN CLINICAL PRACTICE

- Indication on treatment response and duration:
 - Pegylated IFN-α therapy response: patients without PC/BCP mutations are good candidates for interferon treatment, independent of the HBV genotype [28]
 - Nucleos(t)ide analogues treatment + PC/BCP mutations + drug resistance mutations might lead to a higher or lower replication fitness of the resistant virus [29]
- Risk of fulminant hepatitis and hepatocellular carcinoma: chronic hepatitis B patients infected
 with PC/BCP mutant viruses are more susceptible to severe hepatitis and acute-on-chronic liver
 failure (ACLF) [23-27]